
ORIGINAL ARTICLE

Golan Levin

Computer vision for artists and designers: pedagogic tools
and techniques for novice programmers

Received: 17 January 2005 / Accepted: 19 August 2005 / Published online: 17 June 2006
� Springer-Verlag London Limited 2006

Abstract This article attempts to demystify computer vision for novice pro-
grammers through a survey of new applications in the arts, system design
considerations, and contemporary tools. It introduces the concept and gives a
brief history of computer vision within interactive art from Myron Kruger to the
present. Basic techniques of computer vision such as detecting motion and ob-
ject tracking are discussed in addition to various software applications created
for exploring the topic. As an example, the results of a 1-week machine vision
workshop are presented to show how designers are able to apply their skills
toward creating novel uses of these technologies. The article concludes with a
listing of code for basic computer vision techniques.

Keywords Computer vision Æ Machine vision Æ Interactive art Æ
Artistic applications Æ Authoring tools Æ Education

1 Introduction

‘‘Computer vision’’ refers to a broad class of algorithms that allow computers
to make intelligent assertions about digital images and video. Historically, the
creation of computer vision systems has been regarded as the exclusive do-
main of expert researchers and engineers in the fields of signal processing and
artificial intelligence. Likewise, the scope of application development for
computer vision technologies, perhaps constrained by conventional structures
for research funding, has generally been limited to military and law-enforce-
ment purposes. Recently, however, improvements in software development
tools for student programmers and interactive-media artists—in combination
with the rapid growth of open-source code-sharing communities, predictable
increases in PC processor speeds, and plummeting costs of digital video
hardware—have made widespread artistic experimentation with computer
vision techniques a reality. The result is a proliferation of new practitioners
with an abundance of new application ideas, and the incorporation of

G. Levin
School of Art, Carnegie Mellon University,
CFA-300, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA
E-mail: golan@flong.com Æ Tel.: +1-917-5207456

AI & Soc (2006) 20: 462–482
DOI 10.1007/s00146-006-0049-2

computer vision techniques into the design vocabularies of novel artworks,
games, home automation systems, and other areas. This article attempts to
demystify computer vision for novice programmers, through a survey of new
applications in the arts, system design considerations, and contemporary
tools.

A well-known anecdote relates how, sometime in 1966, the legendary Artifi-
cial Intelligence pioneer Marvin Minsky directed an undergraduate student to
solve ‘‘the problem of computer vision’’ as a summer project (Bechtel 2003).
This anecdote is often resuscitated to illustrate how egregiously the difficulty of
computational vision has been underestimated. Indeed, nearly 40 years later, the
discipline continues to confront numerous unsolved (and perhaps unsolvable)
challenges, particularly with respect to high-level ‘‘image understanding’’ issues
such as pattern recognition and feature recognition. Nevertheless, the inter-
vening decades of research have yielded a great wealth of well understood, low-
level techniques that are able, under controlled circumstances, to extract
meaningful information from a camera scene. These techniques are indeed ele-
mentary enough to be implemented by novice programmers at the undergrad-
uate or even high-school level.

This paper attempts to demystify computer vision for novice programmers,
emphasizing the use of vision-based detection and tracking techniques in the
interactive media arts. The next section of this article introduces some of the
ways in which computer vision has found artistic applications outside of
industrial and military research. Section 3 presents an overview of several basic
but widely-used vision algorithms, with example code included in appendices at
the end of the article. Although it is easy to suppose that sophisticated software
is all one needs to create a computer vision system, Sect. 4 makes the case that a
well-prepared physical environment can dramatically improve algorithmic per-
formance and robustness. The remaining sections present a brief survey of
several artist-friendly new computer vision toolkits, and an example of a student
project, developed by novice programmers in a workshop structured around the
considerations presented in this article.

2 Computer vision in interactive art

The first interactive artwork to incorporate computer vision was, interestingly
enough, also one of the first interactive artworks. Myron Krueger’s legendary
Videoplace, developed between 1969 and 1975, was motivated by his deeply felt
belief that the entire human body ought to have a role in our interactions with
computers. In the Videoplace installation, a participant stands in front of a
backlit wall and faces a video projection screen. The participant’s silhouette is
then digitized, and its posture, shape and gestural movements analyzed. In re-
sponse, Videoplace synthesizes graphics such as small ‘‘critters’’ which climb up
the participant’s projected silhouette, or colored loops drawn between the par-
ticipant’s fingers. Krueger also allowed participants to paint lines with their
fingers, and, indeed, entire shapes with their bodies; eventually, Videoplace of-
fered over 50 different compositions and interactions (Figs. 1–2).

Videoplace was notable for many ‘‘firsts’’ in the history of human-computer
interaction. Some of its interaction modules, for example the ones illustrated

463

here, allowed two participants in mutually remote locations to participate in the
same shared video space, connected across the network—an implementation of
the first multi-person virtual reality, or, as Krueger termed it, an ‘‘artificial
reality’’. Videoplace, it should be noted, was developed before Douglas Engle-
bart’s mouse became the ubiquitous desktop device it is today, and was (in part)
created to demonstrate interface alternatives to the keyboard terminals which
dominated computing so completely in the early 1970s. Remarkably enough, the
original Videoplace system is still operational as of this writing.

Messa di Voce (2003), created by this article’s author in collaboration with
Zachary Lieberman, uses whole-body vision-based interactions similar to
Krueger’s, but combines them with speech analysis and situates them within a
kind of projection-based augmented reality. In this audiovisual performance, the
speech, shouts and songs produced by two abstract vocalists are visualized and
augmented in real-time by synthetic graphics. To accomplish this, a computer
uses a set of vision algorithms to track the locations of the performers’ heads;
this computer also analyzes the audio signals coming from the performers’
microphones. In response, the system displays various kinds of visualizations on
a projection screen located just behind the performers; these visualizations are
synthesized in ways which are tightly coupled to the sounds being spoken and

Figs. 1–2 Interaction modules from Myron Krueger’s Videoplace, 1969–1975

464

sung. With the help of the head-tracking system, moreover, these visualizations
are projected such that they appear to emerge directly from the performers’
mouths (Levin and Lieberman) (Fig. 3).

Rafael Lozano-Hemmer’s installation Standards and Double Standards (2004)
incorporates full-body input in a less direct, more metaphorical context. This
work consists of 50 leather belts, suspended at waist height from robotic servo-
motors mounted on the ceiling of the exhibition room. Controlled by a com-
puter vision-based tracking system, the belts rotate automatically to follow the
public, turning their buckles slowly to face passers-by. Lozano-Hemmer’s piece

Fig. 4 Rafael Lozano-Hemmer’s Standards and Double Standards (2004)

Fig. 3 Vocalist Jaap Blonk performing the Messa di Voce interactive software by Golan Levin
and Zachary Lieberman (2003)

465

‘‘turns a condition of pure surveillance into an ‘absent crowd’ using a fetish of
paternal authority: the belt’’ (Lozano-Hemmer) (Fig. 4).

The theme of surveillance plays a foreground role in David Rokeby’s Sorting
Daemon (2003). Motivated by the artist’s concerns about the increasing use of
automated systems for profiling people as part of the ‘‘war on terrorism’’, this
site-specific installation works toward the automatic construction of a diagnostic
portrait of its social (and racial) environment. Rokeby writes: ‘‘The system looks
out onto the street, panning, tilting and zooming, looking for moving things that
might be people. When it finds what it thinks might be a person, it removes the
person’s image from the background. The extracted person is then divided up
according to areas of similar colour. The resulting swatches of colour are then
organized (by hue, saturation and size) within the arbitrary context of the
composite image’’ projected onsite at the installation’s host location (Rokeby)
(Fig. 5).

Fig. 6 Suicide Box by the Bureau of Inverse Technology (1996)

Fig. 5 A composite image assembled by David Rokeby’s Sorting Daemon (2003)

466

Another project themed around issues of surveillance is Suicide Box by the
Bureau of Inverse Technology (Natalie Jeremijenko and Kate Rich). Presented
as a device for measuring the hypothetical ‘‘Despondency Index’’ of a given
locale, the Suicide Box nevertheless records very real data regarding suicide
jumpers from the Golden Gate Bridge. According to the artists, ‘‘The Suicide
Box is a motion-detection video system, positioned in range of the Golden Gate
Bridge, San Francisco in 1996. It watched the bridge constantly and when it
recognised vertical motion, captured it to a video record. The resulting footage
displays as a continuous stream the trickle of people who jump off the bridge.
The Golden Gate Bridge is the premiere suicide destination in the United States;
a 100 day initial deployment period of the Suicide Box recorded 17 suicides.
During the same time period the Port Authority counted only 13.’’ (Bureau of
Inverse Technology). Elsewhere, Jeremijenko has explained that ‘‘the idea was
to track a tragic social phenomenon which was not being counted—that is,
doesn’t count’’ [Shachtman]. The Suicide Box has met with considerable con-
troversy, ranging from ethical questions about recording the suicides, to others
disbelieving that the recordings could be real. Jeremijenko, whose aim is to
address the hidden politics of technology, has pointed out that such attitudes
express a recurrent theme—‘‘the inherent suspicion of artists working with
material evidence’’—evidence obtained, in this case, with the help of machine-
vision based surveillance (Fig. 6).

Figs. 7–8 Stills from Cheese, an installation by Christian Möller (2003)

467

Considerably less macabre is Christian Möller’s clever Cheese installation
(2003), which the artist developed in collaboration with the Machine Perception
Laboratories of the University of California, San Diego. Motivated, perhaps, by
the culture-shock of his relocation to Hollywood, the German-born Möller di-
rected ‘‘six actresses to hold a smile for as long as they could, up to an hour and
a half . Each ongoing smile is scrutinized by an emotion recognition system, and
whenever the display of happiness fell below a certain threshold, an alarm
alerted them to show more sincerity’’ (Möller). The installation replays
recordings of the analyzed video on six flat panel monitors, with the addition of
a fluctuating graphic level-meter to indicate the strength of each actress’ smile.
The technical implementation of this artwork’s vision-based emotion recogni-
tion system is quite sophisticated (Figs. 7–8).

As can be seen from the examples above, artworks employing computer vision
range from the highly formal and abstract, to the humorous and sociopolitical.
They concern themselves with the activities of willing participants, paid volun-
teers, or unaware strangers. And they track people of interest at a wide variety
of spatial scales, from extremely intimate studies of their facial expressions, to
the gestures of their limbs, and to movements of entire bodies. The examples
above represent just a small selection of notable works in the field, and of ways
in which people (and objects) have been tracked and dissected by video analysis.
Other noteworthy artworks which use machine vision include Marie Sester’s
Access; Joachim Sauter and Dirk Lüsebrink’s Zerseher and Bodymover; Scott
Snibbe’s Boundary Functions and Screen Series; Camille Utterback and Romy
Achituv’s TextRain; Jim Campbell’s Solstice; Christa Sommerer and Laurent
Mignonneau’s A-Volve; Danny Rozin’s Wooden Mirror; Chico MacMurtrie’s
Skeletal Reflection, and various works by Simon Penny, Toshio Iwai, and
numerous others. No doubt many more vision-based artworks remain to be
created, especially as these techniques gradually become incorporated into
developing fields like physical computing and robotics.

3 Elementary computer vision techniques

To understand how novel forms of interactive media can take advantage of
computer vision techniques, it is helpful to begin with an understanding of the
kinds of problems that vision algorithms have been developed to address, and
their basic mechanisms of operation. The fundamental challenge presented by
digital video is that it is computationally ‘‘opaque’’. Unlike text, digital video
data in its basic form—stored solely as a stream of rectangular pixel buf-
fers—contains no intrinsic semantic or symbolic information. There is no
widely agreed-upon standard for representing the content of video, in a
manner analogous to HTML, XML or even ASCII for text (though some
new initiatives, notably the MPEG-7 description language, may evolve into
this in the future). As a result, a computer, without additional programming,
is unable to answer even the most elementary questions about whether a
video stream contains a person or object, or whether an outdoor video scene
shows daytime or nighttime, etc. The discipline of computer vision has
developed to address this need.

468

Many low-level computer vision algorithms are geared to the task of distin-
guishing which pixels, if any, belong to people or other objects of interest in the
scene. Three elementary techniques for accomplishing this are frame differencing,
which attempts to locate features by detecting their movements; background
subtraction, which locates visitor pixels according to their difference from a
known background scene; and brightness thresholding, which uses hoped-for
differences in luminosity between foreground people and their background
environment. These algorithms, described below, are extremely simple to
implement and help constitute a base of detection schemes from which sophis-
ticated interactive systems may be built. (Complete implementations of these
algorithms, written in the popular Processing flavor of Java, appear in code
listings at the end of this article.)

3.1 Detecting motion (Code listing 1)

The movements of people (or other objects) within the video frame can be
detected and quantified using a straightforward method called frame differenc-
ing. In this technique, each pixel in a video frame F1 is compared with its
corresponding pixel in the subsequent frame F2. The difference in color and/or
brightness between these two pixels is a measure of the amount of movement in
that particular location. These differences can be summed across all of the pixels’
locations, in order to provide a single measurement of the aggregate movement
within the video frame. In some motion detection implementations, the video
frame is spatially subdivided into a grid of cells, and the values derived from
frame differencing are reported for each of the individual cells. For accuracy, the
frame differencing algorithm depends on relatively stable environmental light-
ing, and on having a stationary camera (unless it is the motion of the camera
which is being measured).

3.2 Detecting presence (Code listing 2)

A technique called background subtraction makes it possible to detect the pres-
ence of people or other objects in a scene, and to distinguish the pixels which
belong to them from those which do not. The technique operates by comparing
each frame of video with a stored image of the scene’s background, captured at a
point in time when the scene was known to be empty. For every pixel in the
frame, the absolute difference is computed between its color and that of its
corresponding pixel in the stored background image; areas which are very dif-
ferent from the background are likely to represent objects of interest. Back-
ground subtraction works well in heterogeneous environments, but it is very
sensitive to changes in lighting conditions, and depends on objects of interest
having sufficient contrast against the background scene.

3.3 Detection through brightness thresholding (Code listing 3)

With the aid of controlled illumination (such as backlighting) and/or surface
treatments (such as high-contrast paints), it is possible to ensure that objects of
interest are considerably darker than, or lighter than, their surroundings. In such

469

cases objects of interest can be distinguished based on their brightness alone. To
do this, each video pixel’s brightness is compared to a threshold value, and
tagged as foreground or background accordingly.

3.4 Simple object tracking (Code listing 4)

A rudimentary scheme for object tracking, ideal for tracking the location of a
single illuminated point (such as a flashlight), finds the location of the single
brightest pixel in every fresh frame of video. In this algorithm, the brightness of
each pixel in the incoming video frame is compared with the brightest value yet
encountered in that frame; if a pixel is brighter than the brightest value yet
encountered, then the location and brightness of that pixel are stored. After all
of the pixels have been examined, then the brightest location in the video frame
is known. This technique relies on an operational assumption that there is only
one such object of interest. With trivial modifications, it can equivalently locate
and track the darkest pixel in the scene, or track multiple, differently colored
objects.

3.5 Basic interactions

Once a person’s body pixels have been located (through the aid of techniques
like background subtraction and/or brightness thresholding), this information
can be used as the basis for graphical responses in interactive systems. In a
2003 Master’s thesis, Unencumbered Full Body Interaction in Video
Games, Jonah Warren presents an elegant vocabulary of various essential
interaction techniques which can use this kind of body-pixel data. These
schema are useful in ‘‘mirror-like’’ contexts, such as Myron Krueger’s
Videoplace, or a game like the PlayStation Eye-Toy, in which the participant
can observe his own image or silhouette composited into a virtual scene
(Figs. 9–11).

Three of the interactions Warren identfies and explains are the Contact
interaction, which can trigger an event when a user’s digital silhouette comes
into contact with a graphic object; the Overlap interaction, which is a continuous
metric based on the percentage of pixels shared between a user’s silhouette and a
graphic object; and the Reflect interaction, which computes the angle of
reflection when a moving object strikes the user’s silhouette (and deflects the
object appropriately). Documentation of several charming games which make
use of these interactions can be found in Warren’s site. As Warren explains it,
the implementation of these interactions requires little more than counting pixels
(Warren).

Naturally, many more software techniques exist, at every level of sophisti-
cation, for detecting, recognizing, and interacting with people and other objects
of interest. Each of the tracking algorithms described above, for example, can be
found in elaborated versions which amend its various limitations. Other easy-
to-implement algorithms can compute specific features of a tracked object, such
as its area, center of mass, angular orientation, compactness, edge pixels, and
contour features such as corners and cavities. On the other hand, some of
the most difficult-to-implement algorithms, representing the cutting edge

470

of computer vision research today, are able (within limits) to recognize unique
people, track the orientation of a person’s gaze, or correctly identify facial
expressions. Pseudocodes, source codes, and/or ready-to-use, executable
implementations of all of these techniques can be found on the Internet in
excellent resources like Daniel Huber’s Computer Vision Homepage (Huber),
Robert Fisher’s HIPR (Hypermedia Image Processing Reference) (Fisher), or in
the software toolkits discussed in Sect. 5, below.

4 Computer vision in the physical world

Unlike the human eye and brain, no computer vision algorithm is completely
‘‘general’’, which is to say, able to perform its intended function given any
possible video input. Instead, each software tracking or detection algorithm is
critically dependent on certain unique assumptions about the real-world video
scene it is expected to analyze. If any of these expectations is not met, then the
algorithm can produce poor or ambiguous results, or even fail altogether. For
this reason, it is essential to design physical conditions in tandem with the
development of computer vision code, and/or to select software techniques
which are best compatible with the available physical conditions.

Figs. 9–11 Contact, Overlap, Reflect: Examples of ‘‘Unencumbered Full-Body Interactions’’
identified by Jonah Warren (Warren)

471

Background subtraction and brightness thresholding, for example, can fail if
the people in the scene are too close in color or brightness to their surroundings.
For these algorithms to work well, it is greatly beneficial to prepare physical
circumstances which naturally emphasize the contrast between people and their
environments. This can be achieved with lighting situations that silhouette the
people, for example, or through the use of specially colored costumes. The
frame-differencing technique, likewise, fails to detect people if they are sta-
tionary, and will therefore have very different degrees of success detecting people
in videos of office waiting rooms compared with, for instance, videos of the Tour
de France bicycle race.

A wealth of other methods exists for optimizing physical conditions in order
to enhance the robustness, accuracy and effectiveness of computer vision soft-
ware. Most are geared towards ensuring a high-contrast, low-noise input image.
Under low-light conditions, for example, one of the most helpful such tech-
niques is the use of infrared (IR) illumination. IR, which is invisible to the
human eye, can supplement the light detected by conventional black-and-white
security cameras. Using IR significantly improves the signal-to-noise ratio of
video captured in low-light circumstances, and can even permit vision systems to
operate in (apparently) complete darkness.

Another physical optimization technique is the use of retroreflective
marking materials, such as those manufactured by 3M Corporation for safety
uniforms. These materials are remarkably efficient at reflecting light back
towards their source of illumination, and are ideal aids for ensuring high-
contrast video of tracked objects. If a small light is placed coincident with the
camera’s axis, objects with retroreflective markers will be detected with
tremendous reliability.

Finally, some of the most powerful physical optimizations for machine vision
can be made without intervening in the observed environment at all, through
well-informed selections of the imaging system’s camera, lens, and frame-
grabber components. To take one example, the use of a ‘‘telecentric’’ lens can
significantly improve the performance of certain kinds of shape-based or
size-based object recognition algorithms. For this type of lens, which has an
effectively infinite focal length, magnification is nearly independent of object
distance. As one manufacturer describes it, ‘‘an object moved from far away to
near the lens goes into and out of sharp focus, but its image size is constant. This
property is very important for gaging three-dimensional objects, or objects
whose distance from the lens is not known precisely’’ (Melles Griot). Likewise,
polarizing filters offer a simple, non-intrusive solution to another common
problem in video systems, namely glare from reflective surfaces. And a wide
range of video cameras is available, optimized for conditions like high-resolu-
tion capture, high-frame-rate capture, short exposure times, dim light, ultravi-
olet light, or thermal imaging. Clearly, it pays to research imaging components
carefully.

As we have seen, computer vision algorithms can be selected to best negotiate
the physical conditions presented by the world, and likewise, physical conditions
can be modified to be more easily legible to vision algorithms. But even the most
sophisticated algorithms and highest-quality hardware cannot help us find
meaning where there is none, or track an object which cannot be described in
code. It is therefore worth emphasizing that some visual features contain more

472

information about the world, and are also more easily detected by the computer,
than others. In designing systems to ‘‘see for us,’’ we must not only become
freshly awakened to the many things about the world which make it visually
intelligible to us, but also develop a keen intuition about their ease of com-
putability. The sun is the brightest point in the sky, and by its height also
indicates the time of day. The mouth cavity is easily segmentable as a dark
region, and the circularity of its shape is also closely linked to vowel sound. The
pupils of the eye emit an easy-to-track IR retroreflection, and they also indicate a
person’s direction of gaze. Or in the dramatic case of Natalie Jeremijenko’s
Suicide Box, discussed earlier: vertical motion in the video frame is easy to find
through simple frame-differencing, and (in a specific context) it can be a stark
indicator of a tragic event. In judging which features in the world are most
profitably selected for analysis by computer vision, we will do well to select those
graphical facts about the world which not only are easy to detect, but also
simplify its semantic understanding.

5 Computer vision in multimedia authoring tools

The last decade has witnessed a profound transformation in the ease-of-use of
software authoring tools for art and design students, and for novice program-
mers generally. While multimedia authoring environments are now commonly
used to create interactive experiences for the World Wide Web, it is now equally
common that these tools are used to create art installations, performances,
commercial kiosks, and interactive industrial design prototypes. With the
gradual incorporation of live video cameras into the palette of available com-
puter inputs, the demand for straightforward computer vision capabilities has
grown as well.

It can be an especially rewarding experience to implement machine vision
techniques directly from first principles, using code such as the examples pro-
vided in this article. To make this possible, the only requirement of one’s soft-
ware development environment is that it should provide direct read-access to the
array of video pixels obtained by the computer’s frame-grabber. Processing is
one such environment, which, through an abundance of graphical capabilities, is
extremely well suited to the electronic arts and visual design communities. Used
worldwide by students, artists, designers, architects, and researchers for learn-
ing, prototyping, and production, Processing obtains live video through a
QuickTime-based interface, and allows for fast manipulations of pixel buffers
with a Java-based scripting language (Fry). The examples which appear in this
article are written in Processing code.

Hopefully, the example algorithms discussed earlier illustrate that creating
low-level vision algorithms from first principles isn’t so hard. Of course, a vast
range of functionality can also be immediately obtained from readymade, ‘‘off-
the-shelf’’ solutions. Some of the most popular machine vision toolkits take the
form of ‘‘plug-ins’’ or extension libraries for commercial authoring environ-
ments geared towards the creation of interactive media. Such plug-ins simplify
the developer’s problem of connecting the results of the vision-based analysis to
the audio, visual and textual affordances generally provided by such authoring
systems.

473

Aficionados of Macromedia’s popular Director software, for example, can
choose vision plug-ins (‘‘Xtras’’) such as Danny Rozin’s TrackThemColors, and
Joshua Nimoy’s Myron (named in honor of Myron Krueger). Rozin’s inex-
pensive plug-in can track multiple objects in the video according to their chroma
or brightness (Rozin). Nimoy’s newer toolkit, which is freeware and open
source, provides more detailed data about the tracked objects in the scene, such
as their bounding quads and contour pixels (Nimoy). Through Director, the
features detected by these Xtras can be linked to the control of sound playback,
2D and 3D graphics, text, and serial communications.

Many vision plug-ins have been developed for Max/MSP/Jitter, a visual
programming environment which is widely used by electronic musicians and
VJs. Originally developed at the Parisian IRCAM research center in the mid-
1980s, and now marketed commercially by the California-based Cycling ’74
company, this extensible environment offers powerful control of (and connec-
tivity between) MIDI devices, real-time sound synthesis and analysis, OpenGL-
based 3D graphics, video filtering, network communications, and serial control
of hardware devices (Cycling’74). The various computer vision plug-ins for
Max/MSP/Jitter, such as David Rokeby’s SoftVNS, Eric Singer’s Cyclops, and
Jean-Marc Pelletier’s CV.Jit, can be used to trigger any Max processes or
control any system parameters. Pelletier’s toolkit, which is the most feature-rich
of the three, is also the only which is freeware. CV.Jit provides abstractions to
assist users in tasks such as image segmentation, shape and gesture recognition,
motion tracking, etc. as well as educational tools that outline the basics of
computer vision techniques (Pelletier).

Some computer vision toolkits take the form of stand-alone applications, and
are designed to communicate the results of their analyses to other environments
(such as Processing, Director or Max) through protocols like MIDI, serial RS-
232, UDP or TCP/IP networks. BigEye, developed by the STEIM (Studio for
Electro-Instrumental Music) group in Holland, is a simple and inexpensive
example. BigEye can track up to 16 objects of interest simultaneously, according
to their brightness, color and size. The software allows for a simple mode of
operation, in which the user can quickly link MIDI messages to many object
parameters, such as position, speed and size (STEIM). Another example is the
powerful EyesWeb open platform, a free system developed at the University of
Genoa. Designed with a special focus on the analysis and processing of
expressive gesture, EyesWeb includes a collection of modules for real-time
motion tracking and extraction of movement cues from human full-body
movement; a collection of modules for analysis of occupation of 2D space; and a
collection of modules for extraction of features from trajectories in 2D space
(Camurri). EyesWeb’s extensive vision affordances make it highly recommended
for students.

The most sophisticated toolkits for computer vision generally demand greater
familiarity with digital signal processing, and require developers to program in
compiled languages like C++, rather than interpreted languages like Java,
Lingo or Max. The Intel Integrated Performance Primitives (IPP) library for
example, is among the most general commercial solutions available for com-
puters with Intel-based CPUs [Intel]. The OpenCV library, by contrast, is a free,
open-source toolkit with nearly similar capabilities, and a tighter focus on

474

commonplace computer vision tasks (Davies). The capabilities of these tools, as
well as all of those mentioned above, are continually evolving.

5.1 An example: LimboTime

In October 2004, I conducted a workshop in machine vision for young artists
and designers at the Benetton Fabrica center in Treviso, Italy. The first day of
the workshop covered the art-historical uses of computer vision, presented in
Sect. 2, and the design considerations discussed in Sects. 3, 4; on the second day,
the participants broke into small groups and were charged with the task of
designing and programming a vision-based system ‘‘from scratch’’. Processing
was used as the development environment; the workshop participants were, for
the most part, either novice programmers or intermediate-level programmers
with little exposure to machine vision techniques.

LimboTime is an example of an interactive game which emerged from this
workshop. In LimboTime, two players stand at opposite sides of the field of
vision of a regular webcam, with their fingers or arms extended towards each
other. The game system locates their extended fingers, and connects a hori-
zontal line between them. This line continually connects these points, even if
the players move their hands. A third player then tries to ‘‘limbo’’ underneath
the imaginary line created by the first two players. The application tracks the
vertical position of the ‘‘limboer’’ relative to the imaginary line; if the limboer
goes above the limbo line, then the system sounds an alarm and the limboer is
retired. If the limboer can pass completely under the line, however, then her
companions lower their line-generating hands somewhat, and the process be-
gins again (Figs. 12–15).

LimboTime is a simple game, conceived and implemented in a single after-
noon. Its implementation grew organically from its creators’ discovery of a wall-
size sheet of white Foamcore in the scrap closet. Realizing that they possessed an
ideal environment for brightness-based thresholding, they used this technique in
order to locate the games’ three players against their background. Detecting the
players’ hands and heads was then accomplished with simple heuristics, e.g. the
limboer’s head is the topmost point of the middle (non-side-touching) blob of
black pixels. LimboTime was just one of the many interesting applications
developed in the Fabrica workshop; other examples included a system to detect
and record the arrivals and departures of birds in a nearby tree, and a system
which allowed its creators to ‘‘paint’’ an image by waving their glowing mobile
phones around a dark room.

6 Conclusion

Computer vision algorithms are increasingly used in interactive and other
computer-based artworks to track people’s activities. Techniques exist which
can create real-time reports about people’s identities, locations, gestural
movements, facial expressions, gait characteristics, gaze directions, and other
characteristics. Although the implementation of some vision algorithms
require advanced understandings of image processing and statistics, a number

475

of widely-used and highly effective techniques can be implemented by novice
programmers in as little as an afternoon. For artists and designers who are
familiar with popular multimedia authoring systems like Macromedia Director
and Max/MSP/Jitter, a wide range of free and commercial toolkits are addi-
tionally available which provide ready access to more advanced vision func-
tionalities.

Since the reliability of computer vision algorithms is limited according to
the quality of the incoming video scene, and the definition of a scene’s
‘‘quality’’ is determined by the specific algorithms which are used to analyze
it, students approaching computer vision for the first time are encouraged to
apply as much effort to optimizing their physical scenario as they do to their
software code. In many cases, a cleverly designed physical environment can
permit the tracking of phenomena that might otherwise require much more
sophisticated software. As computers and video hardware become more
available, and software-authoring tools continue to improve, we can expect to
see the use of computer vision techniques increasingly incorporated into
media-art education, and into the creation of games, artworks and many
other applications.

Figs. 12–15 Stills captured from the LimboTime game system developed by workshop
participants at the Fabrica research center in Treviso, Italy. The participant shown attempts
to pass below an imaginary line drawn between the two black rectangles. If she crosses above
the line, the game rings an alarm. The black rectangles are temporary substitutes for the
extended hands of two other participants (not shown)

476

6.1 Code listing 1: frame differencing

// Processing code for detecting and quantifying

// the amount of movement in the video frame

// using a simple Frame-Differencing technique.

int video_width = 320;

int video_height = 240;

int num_pixels = (video_width * video_height);

int previous_frame[];

//---

void setup(){

 size(320, 240);

 previous_frame = new int [num_pixels]; // Allocate memory for storing the previous

 for (int i=0; i<num_pixels; i++){ // frame of video, and initialize this buffer

 previous_frame[i] = 0; // with blank values.

 }

 beginVideo(video_width, video_height, 30);

}

//---

void loop(){

 int curr_color, prev_color; // Declare variables to store a pixel's color.

 float curr_r, curr_g, curr_b; // Declare variables to hold current color values.

 float prev_r, prev_g, prev_b; // Declare variables to hold previous color values.

 float diff_r, diff_g, diff_b; // Declare variables to hold computed differences.

 float movement_sum = 0; // This stores the amount of movement in this frame.

 for (int i=0; i<num_pixels; i++){ // For each pixel in the video frame,

 curr_color = video.pixels[i]; // Fetch the current color in that location,

 prev_color = previous_frame[i]; // and also the previous color from that spot.

 curr_r = red (curr_color); // Extract the red, green, and blue components

 curr_g = green (curr_color); // of the current pixel's color.

 curr_b = blue (curr_color);

 prev_r = red (prev_color); // Extract the red, green, and blue components

 prev_g = green (prev_color); // of the previous pixel's color.

 prev_b = blue (prev_color);

 diff_r = abs (curr_r - prev_r); // Compute the difference of the red values.

 diff_g = abs (curr_g - prev_g); // Compute the difference of the green values.

 diff_b = abs (curr_b - prev_b); // Compute the difference of the blue values.

 movement_sum += diff_r+diff_g+diff_b; // Add these differences to the running tally.

 pixels[i] = color(diff_r,diff_g,diff_b); // Render the difference image to the screen.

 previous_frame[i] = curr_color; // Swap the current information into the previous.

 }

 println(movement_sum); // Print out the total amount of movement

}

477

6.2 Code listing 2: background subtraction

//---

void setup(){

 size(320, 240);

 beginVideo(video_width, video_height, 30);

 background_img = new int [num_pixels]; // Allocate memory for storing the background

 for (int i=0; i<num_pixels; i++){ // image, and initialize this buffer

 background_img[i] = 0; // with blank values.

 }

}

//---

void keyPressed(){ // When a key is pressed, capture the background

 for (int i=0; i<num_pixels; i++){ // image into the background_img buffer, by copying

 background_img[i] = video.pixels[i]; // each of the current frame's pixels into it.

 }

}

//---

void loop(){

 int curr_color, bkgd_color; // Declare variables to store a pixel's color.

 float curr_r, curr_g, curr_b; // Declare variables to hold current color values.

 float bkgd_r, bkgd_g, bkgd_b; // Declare variables to hold previous color values.

 float diff_r, diff_g, diff_b; // Declare variables to hold computed differences.

 float presence_sum = 0; // This stores, for the current frame, the difference

 // between the current frame and the stored background

 for (int i=0; i<num_pixels; i++){ // For each pixel in the video frame,

 curr_color = video.pixels[i]; // Fetch the current color in that location,

 bkgd_color = background_img[i]; // and also the color of the background in that spot.

 curr_r = red (curr_color); // Extract the red, green, and blue components

// Processing code for detecting the presence of people and objects in the frame using a

// simple Background-Subtraction technique. Initialize the background by pressing a key.

int video_width = 320;

int video_height = 240;

int num_pixels = (video_width * video_height);

int background_img[];

 curr_g = green (curr_color); // of the current pixel's color.

 curr_b = blue (curr_color);

 bkgd_r = red (bkgd_color); // Extract the red, green, and blue components

 bkgd_g = green (bkgd_color); // of the background pixel's color.

 bkgd_b = blue (bkgd_color);

 diff_r = abs (curr_r - bkgd_r); // Compute the difference of the red values.

 diff_g = abs (curr_g - bkgd_g); // Compute the difference of the green values.

 diff_b = abs (curr_b - bkgd_b); // Compute the difference of the blue values.

 presence_sum += diff_r+diff_g+diff_b; // Add these differences to the running tally.

 pixels[i] = color(diff_r,diff_g,diff_b); // Render the difference image to the screen.

 }

 println (presence_sum); // Print out the total amount of movement

}

478

6.3 Code listing 3: brightness thresholding

// Processing code for determining whether a test location (such as the cursor)

// is contained within the silhouette of a dark object.

int video_width = 320;

int video_height = 240;

int num_pixels = (video_width * video_height);

//---

void setup(){

 size(320, 240);

 beginVideo(video_width, video_height, 30);

}

//---

void loop(){

 int black = color(0,0,0); // Declare some constants for colors.

 int white = color(255,255,255);

 int threshold = 127;

 int pix_val; // Declare variables to store a pixel's color.

 float pix_bri;

 // Split the image into dark and light areas:

 for (int i=0; i<num_pixels; i++){ // For each pixel in the video frame,

 pix_val = video.pixels[i]; // fetch the current color in that location,

 pix_bri = brightness (pix_val); // and compute the brightness of that pixel.

 if (pix_bri > threshold){ // Now "binarize" the video into black-and-white,

 pixels[i] = white; // depending on whether each pixel is brighter

 } else { // or darker than a threshold value.

 pixels[i] = black;

 }

 }

 // Test a location to see where it is contained.

 int test_val = get (mouseX, mouseY); // Fetch the pixel at the test location (the cursor),

 float test_bri = brightness (test_val); // and compute its brightness.

 if (test_bri > threshold){ // If the test location is brighter than threshold,

 fill (255,0,0); // draw a RED ellipse at the test location.

 ellipse (mouseX-10, mouseY-10, 20,20);

 } else { // Otherwise,

 fill (0,255,0); // draw a GREEN ellipse at the test location.

 ellipse (mouseX-10, mouseY-10, 20,20);

 }

}

479

6.4 Code listing 4: simple object tracking

// Processing code for tracking the brightest pixel in a live video signal

int video_width = 320;

int video_height = 240;

//---

void setup(){

 size(320, 240);

 beginVideo(video_width, video_height, 30);

}

//---

void loop(){

 image(video, 0, 0, width, height); // Draw the webcam video onto the screen.

 // Declare some numbers to be computed later:

 int brightest_x = 0; // the x-coordinate of the brightest video pixel

 int brightest_y = 0; // the y-coordinate of the brightest video pixel

 float brightest_val = 0; // the brightness of the brightest video pixel

 // Now search for the brightest pixel:

 for (int y=0; y<video_height; y++){ // For each row of pixels in the video image,

 for (int x=0; x<video_width; x++){ // and for each pixel in the y'th row,

 int index = y*video_width + x; // compute each pixel's index in the video,

 int pix_val = video.pixels[index]; // fetch the color stored in that pixel,

 float pix_bri = brightness(pix_val); // and determine the brightness of that pixel.

 if (pix_bri > brightest_val){ // If that value is brighter than any previous,

 brightest_val = pix_bri; // then store the brightness of that pixel,

 brightest_y = y; // as well as its (x,y) location.

 brightest_x = x;

 }

 }

 }

 fill(255,0,0); // Set the fill color to red, and then

 ellipse(brightest_x-10, brightest_y-10, 20,20); // draw a circle at the brightest pixel.

}

7 About the author

Golan Levin is an artist, performer and engineer interested in developing arti-
facts and events which explore supple new modes of reactive expression. His
work focuses on the design of systems for the creation, manipulation and per-
formance of simultaneous image and sound, as part of a more general inquiry
into the formal language of interactivity, and of nonverbal communications

480

protocols in cybernetic systems. Through performances, digital artifacts, and
virtual environments, often created with a variety of collaborators, Levin applies
creative twists to digital technologies that highlight our relationship with
machines, make visible our ways of interacting with each other, and explore the
intersection of abstract communication and interactivity. Levin is assistant
professor of Electronic Time-Based Art at Carnegie Mellon University,
Pittsburgh.

Acknowledgments The author is grateful to Andy Cameron of Fabrica Center, Treviso, for
organizing the workshop which led to this article; Jonathan Harris, Francesca Granato and
Juan Ospina for their LimboTime project and its documentation; David Rokeby and Rafael
Lozano–Hemmer for their kind permissions; and Casey Reas, editor of this volume, who made
this article possible in numerous different ways.

References

Camurri, Antonio et al Eyesweb Vision-oriented software development environment. Labor-
atorio di Informatica Musicale, University of Genoa, Italy http://www.eyesweb.org/

Cycling’74 Inc. Max/MSP/Jitter. Graphic software development environment. http://www.
cycling74.com/

Davies, Bob et al OpenCV Open-source computer vision library. http://www.sourceforge.net/
projects/opencvlibrary/

Fry, Ben and Reas, Casey Processing. Software development environment. http://www.
processing.org/

Nimoy, Joshua. Myron Xtra (plug-in) for macromedia director and processing. http://
www.webcamxtra.sourceforge.net/

Pelletier, Jean-Marc CV.Jit. Extension library for Max/MSP/Jitter. http://www.iamas.ac.jp/
�jovan02/cv/

Rokeby, David SoftVNS Extension library for Max/MSP/Jitter. http://www.homepage.
mac.com/davidrokeby/softVNS.html

Rozin, Danny TrackThemColors Xtra (plug-in) for macromedia director. http://
www.smoothware.com/track.html

Singer, Eric Cyclops Extension library for Max/MSP/Jitter. http://www.cycling74.com/
products/cyclops.html

STEIM (studio for electro-instrumental music). BigEye. Video analysis software. http://
www.steim.org/steim/bigeye.html

Bechtel, William (2003) The cardinal mercier lectures at the Catholic University of Louvain: An
exemplar neural mechanism: the brain’s visual processing system. Ch. 2 p. 1 http://
www.mechanism.ucsd.edu/�bill/research/mercier/2ndlecture.pdf

Fisher Robert, et al The hypermedia image processing reference (HIPR) http://www.home-
pages.inf.ed.ac.uk/rbf/HIPR2/index.html

Fisher Robert, et al CVonline: The evolving, distributed, non-proprietary, on-line compendium
of computer vision. http://www.homepages.inf.ed.ac.uk/rbf/CVonline/

Huber, Daniel et al The computer vision homepage. http://www-2.cs.cmu.edu/�cil/vision.html
Krueger Myron (1991) Artificial Reality II. Addison-Wesley Professional
Levin Golan, Lieberman Zachary (2003) Messa di Voce. Interactive installation, http://

www.tmema.org/messa
Levin, Golan and Lieberman, Zachary (2004) ‘‘In-Situ speech visualization in real-time inter-

active installation and performance.’’In: Proceedings of the 3rd international symposium
on non-photorealistic animation and rendering, June 7–9, Annecy, France http://
www.flong.com/writings/pdf/messa_NPAR_2004_150dpi.pdf

Lozano-Hemmer, Rafael Standards and double standards. Interactive installation. http://
www.fundacion.telefonica.com/at/rlh/eproyecto.html

Melles Griot Corporation. Machine vision lens fundamentals. http://www.mellesgriot.com/pdf/
pg11–19.pdf

Moeller Christian (2003) Cheese. Installation artwork, http://www.christian-moeller.com/

481

Rokeby David (2003) Sorting daemon. Computer-based installation, http://www.homepage.
mac.com/davidrokeby/sorting.html

Shachtman, Noah ‘‘Tech and Art Mix at RNC Protest’’. Wired News, 8/27/2004 http://
www.wired.com/news/culture/0,1284,64720,00.html

Sparacino, Flavia (2001) ‘‘(Some) computer vision based interfaces for interactive art and
entertainment installations’’. INTER_FACE Body Boundaries, ed. Emanuele Quinz,
Anomalie, n.2, Paris, France, Anomos

http://www.sensingplaces.com/papers/Flavia_isea2000.pdf
Warren Jonah (2003) Unencumbered full body interaction in video games. Master’s Thesis,

Parsons School of Design (Unpublished)
http://www.a.parsons.edu/�jonah/jonah_thesis.pdf

482

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Sec1
	Sec2
	Fig1-2
	Fig4
	Fig3
	Fig6
	Fig5
	Fig7-8
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Fig9-11
	Sec10
	Sec11
	Sec12
	Fig12-15
	Sec13
	Figa
	Sec14
	Figb
	Sec15
	Figc
	Sec16
	Figd
	Sec17
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26

